Happyboard

User Guide
0.61

ross@glashan.net

January 6, 2008

Contents

About 2
Features. e 2
Board Connectors e 4
Block Diagram 5

Quickstart 6
Requirements 6
Happyboard Setup 6
Computer Setup e 7
Compiling e 8
Downloadingand Running 9

JoyOS 11
Features. e 11
JoyOS Structure 12
User Code Structure e 12
Function Quick-reference 13

Schematics 15

About

The Happyboard is a feature-packed robot controller board specifically de-
signed for 6.270. This manual provides a brief overview of the boards func-
tionality, and covers how to set up and develop code for the Happyboard.

Features

ATMegai28L Processor

The Happyboard is powered by an Atmel AVR ATMega128L 8bit RISC proces-
sor, running at 8MHz. The ATMega has 128KB onboard flash and 4KB onboard
RAM memory.

32KB External RAM, 128KB External flash

The processor is connected to an external 32KB of SRAM which is available
to user code. There is also an external 128KB flash chip for non-volatile data
storage (it is also used for configuration parameters and FPGA code).

Spartan 3 XC3S50 FPGA

The processor is also connected to a memory-mapped Spartan 3 FPGA, which
controls most of the 10 on the Happyboard. The FPGA offloads the driving of
the motors, servos, shaft encoders and digital inputs from the CPU, leaving
more processing time for user code.

6 2A Motor ports

The Happyboard has 6 Motor ports each capable of driving a motor at up to
2A. Each motor port is also current-sensed and has two LEDs to indicate motor
power and direction

6 RC Servo ports

Alongside the motors are 6 servo ports. These ports allow the position control
of standard RC servos.

8 digital inputs
8 buffered, digital inputs allow the reading of digital sensors like bump switches.

16 10bit analog inputs

16 analog inputs are read by MCP3008 ADCs which provide 10bit readings of
analog sensors like photodiodes, distance sensors and gyros.

4 shaft encoder inputs

4 counter inputs allow for the measurement of sensors like shaft-encoders to
calculate shaft rotation distance, velocity, etc.

16x2 LCD, Pushbuttons, Buzzer, and Frobknob

The Happyboard has a 16x2 character LCD display for printing information to
the user. It also features 2 push buttons and a "Frobknob” wheel allowing the
user to make simple user interfaces. A small piezo beeper allows for basic
sound and music playback.

UsB

A usb mini-b connector provides a simple, fast interface for programming the
Happyboard. The Happyboard is automatically recognised as a USB serial port
by modern operating systems.

JTAG Debug Interface

A small 8 pin connector provides JTAG access to the processor. This interface,
combined with some simple hardware allow for powerful low-level debugging
access to the processor.

12c Expansion connector

l2Cisa commonly used 2-wire multi-device bus, and the Happyboard provides
a expansion header for adding external 12C devices.

Power Supply

The Happyboard can be powered by any 7.5V - 9.5V battery or power supply.
The on-board regulators generate a variety of voltages used by the different
portions of the Happyboard: 5V@3A for servos, 5V@0.5A for user inputs, and
3.3V@1A for logic.

Board Connectors

The diagram below shows all the connectors and ports on the Happyboard.

E
o3
(=]
:
S
[<}
=
<
o3
o
‘6 E
5 g
g .

O Shaft Analog Digital O
Encoder Inputs Inputs

Figure 1: Happyboard Ports & Connectors

Motor 4 & 5

(a) Inputs (b) Motors (c) Servos

Figure 2: Port Pinouts

Block Diagram

The diagram below shows the major components of the Happyboard and their
interconnections.

Servo Ports

[
=
(]
T
[}
¥
=
w
=
=
(]
<
n

Digital Inputs

Motor Ports Analog Inputs

3x L6205N

Motor Drivers

2x MCP3008

Analog Input ADCs

AT45DB011

128KB External Flash

| e |

XC3S50 ATMegai28 NRF24L01
50K Gate FPGA CPU 128KB Flash RF Transceiver
CY7C1399 FT232RL
32K SRAM USB-Serial Interface

Figure 3: Happyboard Block Diagram

USB Port

Quickstart

This section describes how to quickly get up and running developming code for
the Happyboard.

Requirements

Before starting, the following will be required:

e Happyboard

e 7.5-9.5V battery or power supply
e USB Mini-B cable

e Windows, Mac or Linux computer

Small jumper wire or sensor for testing

DC motor and RC Servo for testing

Happyboard Setup

We should check that the Happyboard is operating correctly before connecting
it to the computer. Refer to Figure 1 for the location and pinout of the various
connectors and ports.

1. Connect the battery or power supply to the Happyboard. Ensure the
polarity of the input power is correct, as the Happyboard does not have
reverse-polarity protection. The positive terminal of the power connector
is to the right of the board.

2. Power on the board. The ON position of the switch is away from the frob
knob.

3. Check that the board boots correctly. The Happyboard should boot
up into Happytest (unless it has already been reprogrammed) and print
"Happytest v0.6".

4. Start Happytest. Press GO to start the first test.

5. Test the servo drivers. Plug a servo into one of the servo ports (see
Figure 2(c) for servo pinout). Use the frob knob to change the servo
angle.

6. Test the motor drivers. Plug a DC motor into a motor port (see Figure
2(b) for motor pinout). Use the frob knob to change the motor velocity
and direction. Press GO to switch between motor ports.

7. Test the digital inputs. Plug a jumper wire into a digital port (see Figure
2(a) for pinout). A digital input pulled to ground will show a 1 on the
screen, 0 otherwise.

8. Test the analog inputs. Plug a jumper wire or sensor into an analog port
(see Figure 2(a) for pinout). Use the frob to choose which analog port to
read. The Reading will vary between 0 and 1023 representing a voltage
between 0 and 5 volts on the input.

9. Test the encoder inputs. Plug a jumper wire or sensor into an encoder
port (see Figure 2(a) for pinout). For each transition of the encoder input
the encoder value will increment.

Computer Setup

Happyboard development is possible on most modern operating systems, so
this document will cover setup and development with Linux, Mac OS X, and
Windows.

Before installing any development tools drivers for communicating with the Hap-
pyboard are required. These drivers are available for most operating systems
as the Happyboard uses a common USB chip from FTDI. For drivers for Win-
dows and Mac OS X check the FTDI Site. For most Linux distributions, the
drivers should be installed by default.

With drivers installed, check that the Happyboard is recognised by plugging it
into a USB port on the computer and powering the board up. The Happyboard
should be recognised as a "Happyboard” or a "USB Serial Port”.

The basic development system for the Happyboard is based around a GNU
toolchain, including the usual C tools (GCC, the GNU linker, assmebiler, etc),
as well as a AVR specific C library. A version of these tools is available for most
major platforms. Below is a quick outline of setting up the tools.

Linux

Setting up the AVR tools on Linux is highly dependent on the specific linux
distribution used. For Debian or Debian-based distributions (Ubuntu, etc) the
following is required:

http://www.ftdichip.com/Drivers/VCP.htm

sudo apt-get install binutils-avr gcc-avr avr-libc avrdude
For Fedora or other RPM-based distributions, the following should work:
sudo yum install avr-binutils avr-gcc avr-libc avrdude

Once installed check avr-gcc (at least GCC version 3.3 is required) and avr-
dude work correctly:

avr-gcc —-version
avrdude

Mac OS X

A simple pre-packaged version of the AVR tools is not available for Mac OS X,
but they are available through the Fink or MacPorts distributions. If you have
either installed, a few simple terminal commands allow for the installation of the
tools. For MacPorts:

sudo port install avr-gcc avr-binutils avr-libc avrdude

For Fink:

sudo apt-get install avr-gcc avr-binutils avr-libc avrdude

Once installed check avr-gcc (at least GCC version 3.3 is required) and avr-
dude work correctly:

avr-gcc —-version
avrdude

Windows

For windows, a precompiled package of all the tools is available as WinAVR.
Simply download the latest WinAVR package and install with all the defaults.

Compiling

With the development tools installed, you need the 6.270 libraries to start writ-
ing robot code. Download the latest version of the code from the 6.270 Con-
testants Page.

Extract the 6.270 libraries to a convenient location which will create a 6.270
directory. The 6.270 directory contains the following subdirectories:

e doc/ contains documentation relating to 6.270 code.

e inc/ contains header files for JoyOS and Happylib.

http://www.finkproject.org
http://www.macports.org
http://winavr.sourceforge.net
http://web.mit.edu/6.270/www/contestants/#code
http://web.mit.edu/6.270/www/contestants/#code

e lib/ contains JoyOS and Happylib binary library files.

e src/ contains example robot projects.

Open a terminal (Cmd.exe on windows, Terminal.app on Mac OS X) and change
to the src/robt directory, and run Make.

cd <path-to-6.270>/src/robot
make

The example project (consisting of a single C file, umain.c) should be compiled
and the following displayed:

Compiling umain.o
Linking robot.elf
Generating hex file robot.hex

A robot.hex file should now exist, ready to be downloaded to the Happyboard.

Downloading and Running

Before code can be downloaded to the Happyboard, we need to configure the
port used to perform the download. The serial port name varies between op-
erating systems and computers, so instructions on finding the correct port are
shown below. Once you have the correct port number, open the Makefile in the
robot directory and change the PORT line to the correct port name.

Linux

On most linux distributions the Happyboard will show up as a serial port at
/dev/ttySx*. To find the correct port number, plug the happyboard into a USB
port and turn it on. After a few seconds run the dmesg in a terminal. This should
display the detection on driver setup messages for the Happyboard serial port.
Example dmesg output shown below:

FIXME

Mac OS X

On Mac OS X the Happyboard will show up as a serial port at /dev/tty.usb*x*.
To find the correct port number, plug the happyboard into a USB port and turn
it on. After a few seconds run the following command in a terminal. This should
display the correct port name.

1ls /dev/tty.usb*

Windows

On Windows the Happyboard will show up as a serial port named COM*. The
correct COM port number can be determined in the Device Manager. Right
click on "My Computer”, click "Properties”, then "Hardware”, then "Device Man-
ager”. Under the "Ports (COM & LPT)” section, the last COM port should be
the Happyboard.

Performing the Download

Once the Happyboard port is correctly configured in the Makefile, we're ready to
download code to the Happyboard. Put the Happyboard into download mode
by holding the STOP button down while turning the Happyboard on. After a
few seconds release the STOP button. The Happyboard should now display
"Happyboot”, indicating it is ready to accept code downloads. In the same
directory as the robot.hex file run the following command:

make program

The code will be programmed to the Happyboard’s flash memory. Once the
download completes, reboot the Happyboard (turn off, then on - do not hold
down stop this time). The Happyboard should boot up and run the demo pro-
gram which scrolls the word "ROBOT” back and forth across the LCD.

10

JoyOS

The Happyboard runs a simple operating system called JoyOS. JoyOS pro-
vides a number of features designed to make building a robot with the Happy-
board easier.

Features

Simple Hardware Interface

JoyOS Provides a simple interface to all of the hardware on the Happyboard.
All of the IO functionality is availabe to the user in a simple and straight-foward
interface.

Mutlithreading support

JoyOS provides multithreading support, allowing users to develop code for han-
dling many tasks at once (especially handy for processing 10 tasks in the back-
ground). JoyOS also provides other functionality useful in multithreaded code,
including locks, thread forking, and ISR support functions.

Debugging support

JoyOS also provides a selection of functions to assist in debugging code on
the Happyboard. A variety of logging and error handling support is included.
Various checks are also performedd to ensure the happyboard is operating
correctly.

11

JoyOS Structure

The diagram below shows the major components of JoyOS.

User Application

6.270 Libraries

|| Threads Locks Misc ||

JoyOS Kernel

Device Drivers

Hardware Abstraction Layer

Happyboard

Figure 4: Happyboard Block Diagram

User Code Structure

User code to be run on JoyOS must have a few special functions to operate
correctly.

e void usetup() - This function is called at the start of the 60 second cali-
bration period at the beginning of a competition round.

e void umain() - This function is the main entry point for user code. JoyOS
will create a new thread to begin executing this function.

For examples of JoyOS user code, see the src directory in the JoyOS code.

12

Function Quick-reference

Below is a listing of most useful function calls in JoyOS. For a more detailed
explanation, see the JoyOS API reference.

Motor Ports

e void motor_set_vel (uint8_t motor, intl6_t wel)
Set motor to velocity vel.

e void motor_brake (uint8_t motor)
Set motor to brake mode.

e uintl6_t motor_get_current MA (uint8_t motor)
Return the current drawn by motor.

Servo Ports

e void servo_set_pos (uint8_t servo, uintl6_t pos)
Set servo to position pos.

Digital Ports

e uint8_t digital read (uint8.-t port)
Read the digital sensor on input port.

Analog Ports

e uintl6_t analog read (uint8.t port)
Read the analog sensor on input port.

Shaft Encoder Ports

e uint16_t encoder_read (uint8_t encoder)
Read the encoder count from encoder.

e void encoder_reset (uint8_t encoder)
Reset the encoder count for encoder.

Frob Knob & Pushbuttons

e uint16_t frob_read ()
Read the position of the frob knob.

e void go_click ()
Wait until the go button is clicked.

e uint8_t go_press ()
Check if the go button is pressed.

13

e void stop_click ()
Wait until the stop button is clicked.

e uint8_t stop_press ()
Check if the stop button is pressed.

Beeper

e void beep (uintlé_t freq, uintl6_t duration)
Beep duration milliseconds, at freq Hz.

LCD

e int printf (const char *fmt, ...)
Print fmt formatted text to the LCD.

e void lcd_clear ()

Clear the LCD.

e void lcd_set_pos (uint8t p)
Move cursor to character p on the LCD.

Threads

e uint8_ t create_thread (int(*func) (), uintl6_t stacksize, uint8_t
priority, char *name)
Create a new thread that will execute func and then return. Allocate a
stack of stacksize bytes, and set the thread priority. Also set a thread
name for debugging.

e void yield ()
Give up the processor to another thread until rescheduled.

e void pause (uintl6_t ms)
Pause a thread for ms milliseconds.

e uint32_t get_time ()
Return the number of milliseconds elapsed since startup.

Locks

e void init_lock (struct lock *k, const char *name)
Initialize the lock k. This routine must be called before the lock is used.

e void acquire (struct lock *k)
Acquire the lock k. If another thread holds the lock yield until it is available,
then take it. A thread can recursively acquire the same lock multiple
times, but it must release once for every acquire.

e void release (struct lock *k)
Release the lock k.

14

Schematics

15

H [9

5/7 198Us

0EBC £002/2T/CT

p4eoghddey

sooav <}

o
g

<
[SEREEE

108 VYOS

OVIVT
d

SO

0LNINDSI0ad
as/1ad

MOSISON'OSIN:IdS

6610LA0
=

S_—
[s1-glv:ss34aa

<

Qv

[

4NOO VDdd

]

31V a8/ IWLD

i

lv:$s36aav

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W [e0lvlva a1 < —“
| FSHIL0 01 <
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

aNo ano

sl sl

aND OND aND

|

|

|

|

|

[1e] I
iz Jsory | oo | QN© |
@O o0so] 29 |
|

|

|

|

|

]Me
—

02N pAge+

AEEH

OVLr+ 13834
\\\\\\\\\\\\\\\\\\\\\\ _

16

H K] g
9/Z naaus
BEVZ 200C/2T/CT
pJeoghddey
N

|

|

9 = |

i - [

3 &

|

|

|

|

|

|

|

|

N |

\ |

|

| 5 |

| 2 ,

I H !

I N !

| |

| |

| a0 |

| |

|

| |

| ONZ'08'0V: 115 O |

| ENI'eg'eV:1LO EN W

| eNI282V 1LY T |

| |

< |

| SNI'SE'SVILY G |

W YNI'VEPYILO TN |

|

” [

|

| N |

W Tvawswo |

|

I LelRRRE e o5580n Tolvissauaay |

| SO vy ¥¥ |

| [e"0l43000NT \ seaaar

| 043007 |

| L 0INIBIa \ / Zolaviva |

| |

| |

vOdd
- |
H 3 g

17

H [9 d a 3 g
SsEHSSYSE

BevC L00BC/2T/CT r N

pueoghddey W QNN e W

| ang |

| |

i AF ,

| |

| 500 |

| Rl

| { |

| |

| |

| |

| |

| |

| |

| |
S%Y SHOLOW

S e |

| | |

| | |

| | |

| | ano |

| | |

, e [,

| | |

| | 5 |

| | |

| | |

| | |

| % | |

| 800EAON | |

| 1wn | |

| | |

| | |

I I OIWNN A T I

WV 0av HO1OW 7 £%2 SHOLONW 7

A)V \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

18

H 9 E] a 3 g

S/% 1934s
0EBC £002/2T/CT
p4eoghddey

re """ "77"7"7"77"” - T """ " " " "7 "7 "7 "7 "7 "7 "7 7 7777/ /= il

| |

| |

| |

|] € |

| |

| : |

| ’ g |

| 0z |

| EEEEE W i |

|] |2) S o |

| Md0}02 119 - |

ano €n ane AEEH

| ® |

| A0S |

| & |

| 2 |

7 S ol vLoia 7

e e L L

| QN9 ano |

W H AOSH W

| IES |

| T |

| 8008dON |

| AND A0S+ AO'SH 610 |

| |

| |

| |

| |

| I |

| |

&E%%E@Jm

I AOGH i |

| |

| t |

| T |

, EEEEEERENE ,

, JUHHE ,

| |

| |

| ® |

| A0S |

| |

| S0av ® LNdNI OOJ(Z(\"

H 9 3 a J g

19

H E| a J
5/G 1138Us
0E:QC £BOZ/2T/CT
p4eoghddey
r——>— """ """ " " "7 "7 """ "7 "7 "7 "7/ "7/ "7/ 7/ 7/ 7/ /00—~ n
| |
| |
|
|
|
, |
, |
| I
\\\\\\\\ |
|
|
|
|
|
|
- _ _ _SOHsvH
|
|
TSE1L0 a1 |
Trdhwaan |
|
|
|
|
|
|
|
an |
|
|
|
aol
\\\\\\\\\\\\\\\\\\\\ |
H E] a J

20

800EdON
6N

86010v00
nd

HOLVINO3H AT} VOdd

\\\\\\\\\\\\\\\ A)V

HOLVINO3H ASC VOdd

\\\\\\\\\\\\\\\ A)V

ano
%QW aNo N3

aNSaND ano

H [9 E] a 3 g
9/9 198ysg
Qg ZBRCZ/TT/2T
pJeoghddey
- - -~ 5 n
| ano | I I
| | | |
9'6aNNOH-QVe-LNNOW | | |
| 6H ane QN ane QNeaND aN9 QN9 aND
| eeannow-ava-tnnom, W W W
| 8H %
| 9EaNNOH-QVE-INNON I s I . EE ,
ZH | | 4n0ge | anzzo . 2l |9nool jnezo |
W 9'6aNNO-QVe-LNNOW | " | ?.uﬂ 4 # 8 513 gogTPeeo |
oH 2° vz
1o — ana —|2
| T I neo szitwao E° ° 2 v |
T \\\\\\\\\\\ | X+Zkday | S - |
Zn g1 B 3 N
| J— AeE+ | U0 |
| | A |
| | oaunnA |
| | |
| | |

aNe ane "
y o
,éwﬂ_;o u,uém; a0 = % v Swmﬁmﬁ
o1 813 J20 > oin
ASEr | Agit AT+ AoSH e
936NN A
"43IMOd (O&U_L L dOLV1N9D3Y A0S DOTVNY

H 9 E] a J g

21

	About
	Features
	Board Connectors
	Block Diagram

	Quickstart
	Requirements
	Happyboard Setup
	Computer Setup
	Compiling
	Downloading and Running

	JoyOS
	Features
	JoyOS Structure
	User Code Structure
	Function Quick-reference

	Schematics

