

Designing for Failure
MIT 6.270

January 2012

Why design for failure?

● Murphy's law
● If something fails, it no longer matters how

“unlikely” or “improbable” it was – the only thing
that matters is whether or not your robot can
recover

● With double-elimination final competition, a
single failure is extremely costly

Better yet, design to avoid failure

● Before planning for failure, take steps to avoid it in the first
place:

● Keep code clean and organized – it's hard to spot bugs if
you don't understand the code

● Avoid “magic numbers” in code
● Make code self-describing (no “foo()” functions or “x”

variables) – writing comments is no excuse for ugly or
unclear code

● (See McConnell's Code Complete or Robert C Martin's
Clean Code)

● Look for structural weak points
● Make sure all solder joints are sturdy
● Keep things simple, both mechanically and in software

Figure out what fails - testing!

● After you've attempted to avoid failure, test extensively to find
out what fails

● Make sure to try many cases:

● “normal” case – standard configuration

● Edge cases, for example:
– Start robot nears walls, gearbox

– Leave some balls on the field near your robot

● Test frequently during development – don't wait until robot is
“finished” - cost to fix issues increases exponentially as time
goes on

● Write down everything that fails and steps to reproduce

● Run regression tests – after fixing one error, make sure old
errors aren't reintroduced

Example: why testing is important

● Features that were added because of failures
during testing:
● Double chain
● Redundant IR LED Phototransistor pair
● Lift switch
● Wire/HappyBoard covers

Handling Failure Well

● We all fail sometimes – it's ok, but do
something about it!

● Write code to check for and handle exceptional
cases

Tip #1: Add timeouts

● Don't continue action forever if you aren't
making progress

● Robots trying to drive through a wall for 2
minutes makes for a boring competition!

● Easy but effective timeout: If you tell robot to go
somewhere, but it doesn't get there fast
enough, back up and try again

Tip #2: Escalate Response

● “Insanity is doing the same thing over and over
again and expecting different results”

● If you timeout/fail more than once, try
something different

● Maybe even use randomness in response

Tip #3: Use extra sensors to check
for failures

● Add switches to detect wall collisions
● Check motor current for stalls
● Modify servo to get position feedback

Tip #4: Use redundancy

● Make sure critical and error-prone parts are
redundant
● e.g. chains, certain sensors

Tip #5: Reorient after failures

● Collisions often occur because of inaccurate
location info – should reorient before continuing

● Can use vision system to recalibrate
position/heading

● Can also drive into a wall at full force if your
robot has a flat front (watch out for balls though)

Tip #6: Test actuators and sensors
on startup

● Write a test mode that will extend actuators and
check for sensor inputs

● Run tests during setup period before each
round

Tip #7: Use Checklists!

● Use a checklist to look over your robot for
issues before every round

● Checklists work: pilots use checklists to avoid
forgetting crucial steps during takeoffs and
landings

● 2009 World Health Organization study: basic
checklist for doctors and nurses reduced
number of deaths from surgery by more than
40%

