

6.270 Lecture 3
Control Systems

Scott Bezek
January 2011

What we saw yesterday...

● Drive “straight”:

● int umain() {
● while(1) { //loop forever
● if (gyro_get_degrees() > 45) {
● motor_set_vel(0, 150);
● motor_set_vel(1, 50);
● } else {
● motor_set_vel(0, 50);
● motor_set_vel(1, 150);
● }
● }
● }

We can do better than that

● With binary feedback:
● Oversteering
● Jerky
● Not how you would drive a car

● What if we adjust based on amount of error?
● Larger error → larger adjustment
● Proportional Control!

Proportional Control

Desired
Heading

+ PlantController
Motor

Velocities
Error Output Heading

Sensor
(gyro)

Current
Heading

-

Proportional Control

● Let's write a proportional controller!
● Demo!

Proportional Control
#include <joyos.h>

//returns a bounded velocity
int16_t limitVel(float vel){
 if (vel < 0) return 0;
 if (vel > 255) return 255;
 return (int16_t)vel;
}

int umain(){
 int16_t forwardVel = 150;
 float desiredHeading = 45.0;

 while(true){ //loop forever
 float gain = frob_read_range(5, 50)/10.0; //gain is configured by frob knob

 float error = desiredHeading - gyro_get_degrees(); //calculate heading error

 //Use heading error and gain to calculate motor velocities
 float leftVel = forwardVel - error * gain;
 float rightVel = forwardVel + error * gain;

 motor_set_vel(0, limitVel(leftVel));
 motor_set_vel(1, limitVel(rightVel));
 }
 return 0;
}

int usetup(){
 gyro_init (11, 1400000, 500L);
 return 0;
}

Some notes about the gyro

● gyro_get_degrees() gives absolute heading
with reference to starting position

● i.e. if you rotate CCW twice,
gyro_get_degrees() returns 720

● Probably want helper function to calculate
heading error better
● e.g. take heading mod 360
● e.g. error should never be > 180 or < -180

● Calibrate it before using!

Calibrating the gyro
● Change Makefile:

USERSRC = user/gyrotest/umain.c

● “make clean”

● “make program”

● Set robot on spinny chair (make sure it's parallel to the ground)

● Unplug USB cable, reboot HappyBoard, press Go

● Spin chair 10 revolutions at a moderate speed

● Plug in USB cable and open serial terminal

● Should see “theta = 3723” for example

● Divide by 3600 and multiply by LSB_US_PER_DEG to get new value
for LSB_US_PER_DEG

● Update user/gyrotest/umain.c, reprogram HappyBoard, repeat –
should get theta closer to 3600 this time

Problems with Proportional Control

● Bias – never reach desired value
● Oscillations

PID Control

● Proportional
● Handles majority of correction

● Integral
● Adjusts output based on magnitude and duration of

error
● Can reduce bias

● Derivative
● Adjusts output based on rate of change of error
● Slows down controller output changes
● Can reduce amount of overshooting

Tuning PID Controller

● More complicated than proportional: 3
parameters

● See
http://en.wikipedia.org/wiki/PID_controller#Loop
_tuning for several tuning methods

Some ideas for driving

● Consider using multiple controllers
● Heading controller (rotational velocity)
● Distance controller (forward velocity)

● Update the desired heading as you drive
● This will be covered tomorrow

● Can robot drive backwards? → maximum
heading error is 90 degrees

Upcoming Events
● Another soldering workshop @ 3pm (if you missed

yesterday's)

● Part 2 of C Crash Course – HappyBoard-specific and
advanced topics (threading, etc) @ 7pm

● Localization and Navigation Lecture: tomorrow @
11am

● Lab is open – work on your robots!

● Make sure your development environment is set up –
we have rental HappyBoards in lab – see a TA

