0.270 Lecture 4

Localization/Navigation

Scott Bezek
January 2011

Corrections/Notes

* “8-hole pulley” — “6-hole pulley”

e Dual differential: should have mentioned that it's
weaker than a standard differential drive since
single motor provides all of the torque driving
forward or backward rather than two motors

Putting things together

* Yesterday, we saw how to drive in a certain
direction

* |n order to drive somewhere, must know where
we are first (localization)

» Also want high level control of robot: should be
able to say moveToPoint(x,y) (navigation
system)

| ocalization

 Difficult to navigate unless you know where you
are at all times

e Tough problem:

e Sensors noisy

 Small errors can lead to large problems:

- Afew degrees of error can lead to 1ft of inaccuracy if you
drive across the board

A peek at localization...

« Dead reckoning: Estimate your own position based on
previous estimated position and amount of change

e How?

Encoder — distance

Gyro — direction
Distance sensors?

Accelerometer?
e Why?
 VPS updates infrequently

 VPS updates are old (latency)
* VPS heading isn't extremely accurate

A peek at localization...

 WWe want to update our estimated position: x
andy

* At each time step: (pseudocode)

« dist = encoder read(ENC PORT) * CONV_FACTOR

e encoder reset(ENC _PORT)

e X =X + dist*cos(theta) //use old heading

e y =y +dist*sin(theta)

» theta = gyro_get degrees() % 360 //update cur heading

Better localization possible?

It doesn't make sense to just ignore the VPS
Best of both worlds?

Dead reckoning:

« Accurate short-term; fast updates

* Relative changes

* Reliable, smooth data (but drifts)

VPS:

» Accurate long-term (no drifting)

* Absolute positioning

» Potential outages, dropped packets, jitter

How does VPS work?

* Fiducial pattern on top of your robot

 Camera mounted above playing
field that tracks these patterns

* Wirelessly transmits your location to
your robot

Use VPS data too...

e Let's add some code to handle the VPS too
 When a VPS update arrives:

e X =vVps data.x

 y =vps data.y

* This would mean VPS data is 100% trusted,
since it overwrites our dead reckoning
estimated position...

Merge VPS data w/ dead reckoning

One idea: weight VPS data and combine with
existing dead-reckoning data

When a VPS update arrives:

 //calculate a confidence weight

e confidence = (255 — abs(motor_vel)) / 255.0

* X = confidence*vps data.x + (1-confidence)*x
* y = confidence*vps data.y + (1-confidence)*y

» Better, but what about latency?

Dealing with latency

* VPS data is inherently old — when it says “you
are at (x,y)” think of it as actually saying “300ms
ago you were at (x,y)”

* |f we store history of distance travelled and
rotation amount (from dead-reckoning), can
reconstruct path taken since VPS snapshot

* Apply this path to the VPS snapshot data to get
an accurate estimate of where we are now

Keeping path history

» Store a history of dead-reckoning updates (ring buffer)

» At each time step:

» dist = encoder_read(ENC_PORT)*CONV_FACTOR
* encoder_reset(ENC_PORT)

e X =X + dist*cos(theta)

« y =y +dist*sin(theta)

 newTheta = gyro _get degrees() % 360

 dTheta = newTheta — theta

 theta = newTheta

 add to history(dist, dTheta, current_time())

Path History Example

.

dist dTheta
4 30

/7 0

2 12

4 -12

6 -110

time

1000
1051
1103
1157
1202

Applying path history

* Given the VPS x,y,theta, apply path history to
get a more accurate estimate of current location

 Pseudocode:

Let data time = time that the VPS snapshot
represents = vps_data.timestamp - 300ms

Look in path history to find first entry newer than
data_time

Apply distance and dTheta to current location
estimate

Repeat previous step until at end of history

A peek at localization...

« When a VPS update arrives:

//calculate a confidence “weight”

confidence = (255 — abs(motor_vel)) / 255.0

data_time = vps data.timestamp — 300 //300ms latency
dx_since data = get _total dx_ since(data_time)

dy since data = get total dy since(data time)

Vps_ X = vps_data.x + dx_since data

Vps Yy = vps data.y + dy since data

X = confidence*vps_ x + (1-confidence)*x

y = confidence*vps Yy + (1-confidence)™y

Basic Localization

e Just created basic sensor fusion localization
code!

e Could get more advanced (e.g. Kalman filters)

 Now that we know where we are, let's go
somewhere!

Let's build a nav subsystem!

» Goal: package navigation/locomotion into self-
contained system

* Navigation should run in the background (use
threading) so that high level code doesn't need
to worry about PID updates or dead-reckoning
at all

e Abstraction!

What should it do?

* High-level functions to drive around:

move ToPoint(x, y , fwd_speed, tolerance)
turnToHeading(heading, ang_speed, tolerance)
turnToPoint(x, y, ang_speed, tolerance)
moveStraight(fwd _speed)

StopMoving()

iIsMoving()

« Keep track of state of navigation system:

MOVING TO POINT
TURNING_TO HEADING
MOVING STRAIGHT
STOPPED

Why is this nice?

 Clean, easy-to-read code — drive in a square:

 moveToPoint(0,0, VEL, TOL)

* while (isMoving()); //loop until stopped
 moveToPoint(100,0, VEL, TOL)

* while (isMoving());
 moveloPoint(100,100, VEL, TOL)

* while (isMoving());

 moveToPoint(0, 100, VEL, TOL)

* while (isMoving());
 moveTloPoint(0,0, VEL, TOL)

Start from the bottom

* At the lowest level, we need to set left/right
motor velocities

* We would rather set forward/angular velocities
— then we can have a rotation PID controller
and a proportional forward velocity controller

« For moveToPoint(), we'll use both rotationPID
and forward controller simultaneously

e For turnToPoint(), we'll only use rotationPID

Setting up a nav system

* Imagine we have some “global” nav system
state:

* Float goalX
* Float goalY

* Float goalTheta
* Int goalFVe

* Int goalAVe
* Int state = STOPPED

Setting up a nav system

Then high-level functions are simple — just need to set state variables for
background navigation system to read

Void moveToPoint(x, y, fVel, tolerance)
GoalX = x
GoalY =y
GoalVel = fVel
GoalTolerance = tolerance
State = MOVING _TO_POINT
Void turnToHeading(heading, aVel, tolerance)
* GoalTheta = heading
 GoalVel = aVel
« GoalTolerance = tolerance
« State = TURNING_TO HEADING
Void turnToPoint(x, y, aVel, tolerance)
* heading = atan2(currentY -y, currentX — x)
« turnToHeading(heading, aVel, tolerance)

The Navigation Process

« Main navigation loop (runs in background):
« while(true){

getLocation() //dead-reckoning and VPS
If (state == TURN_TO_HEADING)
» desiredHeading = goalHeading
else
» desiredHeading = ... //use trigonometry based on goalX, goalY...
setRotationPIDGoal(desiredHeading);
UpdateRotationPID(); //sets desiredAVel
If (state == MOVE_TO_POINT)
« DesiredFVel = ... //proportional to distance to goalX,goalY
Else
* DesiredFVel =0
LeftVel = desiredFVel + desiredAVel
RightVel = desiredFVel — desiredAVel
motor_set vel(0, LeftVel)
motor_set_vel(1, RightVel)
If (state == MOVE_TO_POINT && distToGoal() < GoalTolerance)
» State == STOPPED

If (state == TURN_TO_ HEADING && headingError() < GoalTolerance)
« State == STOPPED

Minor details

 Add locks to avoid race conditions

* |f heading error too large, perhaps limit forward
velocity until pointed in the right direction

Upcoming Events

No big events today - work on your robots!
Lecture tomorrow: Designing for Failure — 11am

Control Systems workshop tomorrow at 3pm —
nave your robot ready to drive

HappyBoards are just about ready

